Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, charcoal (which is mostly carbon), and potassium nitrate (saltpeter). The sulfur and charcoal act as , while the saltpeter is an oxidizer. Gunpowder has been widely used as a propellant in , artillery, , and pyrotechnics, including use as a blasting agent for in , mining, building pipelines, , and roads.
Gunpowder is classified as a low explosive because of its relatively slow decomposition rate, low ignition temperature and consequently low brisance (breaking/shattering). Low explosives deflagrate (i.e., burn at subsonic speeds), whereas high explosives detonate, producing a supersonic shockwave. Ignition of gunpowder packed behind a projectile generates enough pressure to force the shot from the muzzle at high speed, but usually not enough force to rupture the gun barrel. It thus makes a good propellant but is less suitable for shattering rock or fortifications with its low-yield explosive power. Nonetheless, it was widely used to fill fused artillery shells (and used in mining and civil engineering projects) until the second half of the 19th century, when the first were put into use.
Gunpowder is one of the Four Great Inventions of China.Buchanan (2006), p. 42 Originally developed by for medicinal purposes, it was first used for warfare around AD 904. Its use in weapons has declined due to smokeless powder replacing it, whilst its relative inefficiency led to newer alternatives such as dynamite and ANFO replacing it in industrial applications.
In quarrying, high explosives are generally preferred for shattering rock. However, because of its low brisance, gunpowder causes fewer fractures and results in more usable stone compared to other explosives, making it useful for blasting slate, which is fragile, or monumental stone such as granite and marble. Gunpowder is well suited for , , , and rescue-line launches. It is also used in fireworks for lifting shells, in rockets as fuel, and in certain .
Combustion converts less than half the mass of gunpowder to gas; most of it turns into particulate matter. Some of it is ejected, wasting propelling power, fouling the air, and generally being a nuisance (giving away a soldier's position, generating fog that hinders vision, etc.). Some of it ends up as a thick layer of soot inside the barrel, where it also is a nuisance for subsequent shots, and a cause of jamming an automatic weapon. Moreover, this residue is hygroscopic, and with the addition of moisture absorbed from the air forms a corrosive substance. The soot contains potassium oxide or sodium oxide that turns into potassium hydroxide, or sodium hydroxide, which corrodes wrought iron or steel gun barrels. Gunpowder arms therefore require thorough and regular cleaning to remove the residue.
Gunpowder loads can be used in modern firearms as long as they are not gas-operated. The most compatible modern guns are smoothbore-barreled shotguns that are Recoil operation with Chrome plating essential parts such as barrels and bores. Such guns have minimal fouling and corrosion, and are easier to clean.
The earliest chemical formula for gunpowder appeared in the 11th-century Song dynasty text Wujing Zongyao ( Complete Essentials from the Military Classics), written by Zeng Gongliang between 1040 and 1044. The Wujing Zongyao provides encyclopedia references to a variety of mixtures that included petrochemicals—as well as garlic and honey. A slow match for flame-throwing mechanisms using the siphon principle and for fireworks and rockets is mentioned. The mixture formulas in this book contain at most 50% not enough to create an explosion, they produce an incendiary instead. The Essentials was written by a Song dynasty court bureaucrat and there is little evidence that it had any immediate impact on warfare; there is no mention of its use in the chronicles of the wars against the Tangut people in the 11th century, and China was otherwise mostly at peace during this century. However, it had already been used for fire arrows since at least the 10th century. Its first recorded military application dates its use to 904 in the form of incendiary projectiles. In the following centuries the Chinese recognised gunpowder for it's military applications and gunpowder was weaponised in the form of , fire lances and Hand cannon in China. Explosive weapons such as bombs have been discovered in a shipwreck off the shore of Japan dated from 1281, during the Mongol invasions of Japan. By 1083 the Song court was producing hundreds of thousands of fire arrows for their garrisons. Bombs and the first proto-guns, known as "fire lances", became prominent during the 12th century and were used by the Song during the Jin-Song Wars. Fire lances were first recorded to have been used at the Siege of De'an in 1132 by Song forces against the Jin. In the early 13th century the Jin used iron-casing bombs. Projectiles were added to fire lances, and re-usable fire lance barrels were developed, first out of hardened paper, and then finally, the barrels were made out of metal to better withstand the explosive pressure of gunpowder. By 1257 some fire lances were firing wads of bullets. In the late 13th century metal fire lances became 'eruptors', proto-cannons firing co-viative projectiles (mixed with the propellant, rather than seated over it with a wad), and by 1287 at the latest, had become true guns, the hand cannon, which included a metal barrel, touch hole and gunpowder chamber.
Hasan al-Rammah included 107 gunpowder recipes in The Book of Military Horsemanship and Ingenious War Devices (), 22 of which are for rockets. The median of 17 of these 22 compositions for rockets (75% nitrates, 9.06% sulphur, and 15.94% charcoal) are nearly identical to the modern reported ideal recipe of 75% potassium nitrate, 10% sulphur, and 15% charcoal. The text also mentions fuses, incendiary bombs, naphtha pots, fire lances, and an illustration and description of the earliest torpedo. The torpedo was called the "egg which moves itself and burns". Two iron sheets were fastened together and tightened using felt. The flattened, pear-shaped vessel was filled with gunpowder, metal filings, "good mixtures", two rods, and a large rocket for propulsion. Judging by the illustration, it was supposed to glide across the water. Fire lances were used in battles between the Muslims and Mongols in 1299 and 1303.
Al-Hassan claims that in the Battle of Ain Jalut of 1260, the Mamluk Sultanate used "the first cannon in history" against the Mongols, utilizing a formula with near-identical ideal composition ratios for explosive gunpowder. Other historians urge caution regarding claims of Islamic firearms use in the 1204–1324 period, as late medieval Arabic texts used the same word for gunpowder, naft, that they used for an earlier incendiary, naphtha.
The earliest surviving documentary evidence for cannons in the Islamic world is from an Arabic manuscript dated to the early 14th century. ( Part 4 and Part 5 ) The author's name is uncertain but may have been Shams al-Din Muhammad, who died in 1350. Dating from around 1320–1350, the illustrations show gunpowder weapons such as gunpowder arrows, bombs, fire tubes, and fire lances or proto-guns. The manuscript describes a type of gunpowder weapon called a midfa which uses gunpowder to shoot projectiles out of a tube at the end of a stock. Some consider this a cannon, while others do not. The problem with identifying cannons in early 14th-century Arabic texts is the term midfa, which appears from 1342 to 1352 but cannot be proven to be true hand-guns or bombards. Contemporary accounts of a metal-barrel cannon in the Islamic world do not occur until 1365. Needham believes that in its original form the term midfa refers to the tube or cylinder of a naphtha projector (flamethrower). After the invention of gunpowder, it meant the tube of fire lances, and eventually it applied to the cylinder of hand-guns and cannons.
According to Paul E. J. Hammer, the Mamluk Sultanate certainly used cannons by 1342. According to J. Lavin, cannons were used by Moors at the siege of Algeciras in 1343. Shihab al-Din Abu al-Abbas al-Qalqashandi described a metal cannon firing an iron ball between 1365 and 1376.
The musket appeared in the Ottoman Empire by 1465. In 1598, Chinese writer Zhao Shizhen described Turkish muskets as being superior to European muskets. The Chinese military work Wubei Zhi (1621) later described Turkish muskets that used a rack and pinion mechanism, which was not known to have been used in European or Chinese firearms at the time.
The state-controlled manufacture of gunpowder by the Ottoman Empire through early to obtain nitre, sulphur and high-quality charcoal from oaks in Anatolia contributed significantly to its expansion between the 15th and 18th centuries. It was not until later in the 19th century that the systemic production of Turkish gunpowder was reduced considerably, coinciding with the decline of its military might.
Some sources mention possible gunpowder weapons being deployed by the Mongols against European forces at the Battle of Mohi in 1241. Professor Kenneth Warren Chase credits the Mongols for introducing into Europe gunpowder and its associated weaponry. However, there is no clear route of transmission, and while the Mongols are often pointed to as the likeliest vector, Timothy May points out that "there is no concrete evidence that the Mongols used gunpowder weapons on a regular basis outside of China." May also states, "however , the Mongols used the gunpowder weapon in their wars against the Jin, the Song and in their invasions of Japan."
Records show that, in England, gunpowder was being made in 1346 at the Tower of London; a powder house existed at the Tower in 1461, and in 1515 three King's gunpowder makers worked there. Gunpowder was also being made or stored at other royal castles, such as Portchester. The English Civil War (1642–1645) led to an expansion of the gunpowder industry, with the repeal of the Royal Patent in August 1641.
In late 14th century Europe, gunpowder was improved by corning, the practice of drying it into small clumps to improve combustion and consistency. During this time, European manufacturers also began regularly purifying saltpeter, using wood ashes containing potassium carbonate to precipitate calcium from their dung liquor, and using ox blood, alum, and slices of turnip to clarify the solution.
During the Renaissance, two European schools of pyrotechnics thought emerged, one in Italy and the other at Nuremberg, Germany. In Italy, Vannoccio Biringuccio, born in 1480, was a member of the guild Fraternita di Santa Barbara but broke with the tradition of secrecy by setting down everything he knew in a book titled De la pirotechnia, written in vernacular. It was published posthumously in 1540, with nine editions over 138 years, and also reprinted by MIT Press in 1966.
By the mid-17th century fireworks were used for entertainment on an unprecedented scale in Europe, being popular even at resorts and public gardens. With the publication of Deutliche Anweisung zur Feuerwerkerey (1748), methods for creating fireworks were sufficiently well-known and well-described that "Firework making has become an exact science." In 1774 Louis XVI ascended to the throne of France at the age of 20. After he discovered that France was not self-sufficient in gunpowder, a Gunpowder Administration was established; to head it, the lawyer Antoine Lavoisier was appointed. Although from a bourgeois family, after his degree in law Lavoisier became wealthy from a company set up to collect taxes for the Crown; this allowed him to pursue experimental natural science as a hobby.In 1777 Lavoisier named oxygen, which had earlier been isolated by Joseph Priestley; the realization that saltpeter contained this substance was fundamental to understanding gunpowder.
Without access to cheap saltpeter (controlled by the British), for hundreds of years France had relied on saltpetremen with royal warrants, the droit de fouille or "right to dig", to seize nitrous-containing soil and demolish walls of barnyards, without compensation to the owners. This caused farmers, the wealthy, or entire villages to bribe the petermen and the associated bureaucracy to leave their buildings alone and the saltpeter uncollected. Lavoisier instituted a crash program to increase saltpeter production, revised (and later eliminated) the droit de fouille, researched best refining and powder manufacturing methods, instituted management and record-keeping, and established pricing that encouraged private investment in works. Although saltpeter from new Prussian-style putrefaction works had not been produced yet (the process taking about 18 months), in only a year France had gunpowder to export. A chief beneficiary of this surplus was the American Revolution. By careful testing and adjusting the proportions and grinding time, powder from mills such as at Essonne outside Paris became the best in the world by 1788, and inexpensive.
Two British physicists, Andrew Noble and Frederick Abel, worked to improve the properties of gunpowder during the late 19th century. This formed the basis for the Noble-Abel gas equation for internal ballistics.
The introduction of smokeless powder in the late 19th century led to a contraction of the gunpowder industry. After the end of World War I, the majority of the British gunpowder manufacturers merged into a single company, "Explosives Trades limited", and a number of sites were closed down, including those in Ireland. This company became Nobel Industries Limited, and in 1926 became a founding member of Imperial Chemical Industries. The Home Office removed gunpowder from its list of "Permitted Explosives". Shortly afterwards, on 31 December 1931, the former Curtis & Harvey's Glynneath gunpowder factory at Pontneddfechan in Wales closed down. The factory was demolished by fire in 1932. The last remaining gunpowder mill at the Royal Gunpowder Factory, Waltham Abbey was damaged by a German parachute mine in 1941 and it never reopened. This was followed by the closure and demolition of the gunpowder section at the Royal Ordnance Factory, ROF Chorley, at the end of World War II, and of ICI Nobel's Roslin gunpowder factory which closed in 1954.
The shipwrecked Ottoman Admiral Seydi Ali Reis is known to have introduced the earliest type of matchlock weapons, which the Ottomans used against the Portugal during the Siege of Diu (1531). After that, a diverse variety of firearms, large guns in particular, became visible in Tanjore, Dacca, Adil Shahi, and Murshidabad. Guns made of bronze were recovered from Calicut (1504)- the former capital of the
The Mughal emperor Akbar mass-produced matchlocks for the Mughal Army. Akbar is personally known to have shot a leading Rajput commander during the Siege of Chittorgarh. The Mughal Empire began to use bamboo rockets (mainly for signalling) and employ : special units that undermined heavy stone fortifications to plant gunpowder charges.
The Mughal Emperor Shah Jahan is known to have introduced much more advanced matchlocks, their designs were a combination of Ottoman and Mughal designs. Shah Jahan also countered the British Empire and other Europeans in his province of Gujarāt, which supplied Europe saltpeter for use in gunpowder warfare during the 17th century."India." Encyclopædia Britannica 2008 Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2008. Bengal and Malwa participated in saltpeter production. The Dutch, French, Portuguese, and English used Chhapra as a center of saltpeter refining.
Ever since the founding of the Sultanate of Mysore by Hyder Ali, France military officers were employed to train the Mysore Army. Hyder Ali and his son Tipu Sultan were the first to introduce modern cannons and , their army was also the first in India to have official uniforms. During the Second Anglo-Mysore War Hyder Ali and his son Tipu Sultan unleashed the Mysorean rockets at their British opponents effectively defeating them on various occasions. The Mysorean rockets inspired the development of the Congreve rocket, which the British widely used during the Napoleonic Wars and the War of 1812."rocket and missile system." Encyclopædia Britannica 2008 Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2008.
Even though the knowledge of making gunpowder-based weapons was known after the failed Mongol invasion of Java, and the predecessor of firearms, the Hand cannon (bedil tombak), is recorded as being used by Java in 1413,Mayers (1876). "Chinese explorations of the Indian Ocean during the fifteenth century". The China Review. IV: p. 178. the knowledge of making "true" firearms came much later, after the middle of the 15th century. It was brought by the nations of West Asia, most probably the Arabs. The precise year of introduction is unknown, but it may be safely concluded to be no earlier than 1460. Before the arrival of the Portuguese in Southeast Asia, the natives already possessed primitive firearms, the Java arquebus. Portuguese influence to local weaponry after the capture of Malacca (1511) resulted in a new type of hybrid tradition matchlock firearm, the istinggar.Andaya, L. Y. 1999. Interaction with the outside world and adaptation in Southeast Asian society 1500–1800. In The Cambridge history of southeast Asia. ed. Nicholas Tarling. Cambridge: Cambridge University Press, 345–401.
When the Portuguese came to the archipelago, they referred to the breech-loading swivel gun as berço, while the Spaniards call it verso. By the early 16th century, the Javanese already locally producing large guns, some of them still survived until the present day and dubbed as "sacred cannon" or "holy cannon". These cannons varied between 180- and 260-pounders, weighing anywhere between 3 and 8 tons, length of them between 3 and 6 m. Modern Asian Studies. Vol. 22, No. 3, Special Issue: Asian Studies in Honour of Professor Charles Boxer (1988), pp. 607–628 (22 pages).
Saltpeter harvesting was recorded by Dutch and German travelers as being common in even the smallest villages and was collected from the decomposition process of large dung hills specifically piled for the purpose. The Dutch punishment for possession of non-permitted gunpowder appears to have been amputation. Ownership and manufacture of gunpowder was later prohibited by the colonial Netherlands occupiers.Dipanegara, P.B.R. Carey, Babad Dipanagara: an account of the outbreak of the Java war, 1825–30 : the Surakarta court version of the Babad Dipanagara with translations into English and Indonesian volume 9: Council of the M.B.R.A.S. by Art Printing Works: 1981. According to colonel McKenzie quoted in Sir Thomas Stamford Raffles', The History of Java (1817), the purest sulfur was supplied from Ijen near the straits of Bali.
However, the history of gunpowder is not without controversy. A major problem confronting the study of early gunpowder history is ready access to sources close to the events described. Often the first records potentially describing use of gunpowder in warfare were written several centuries after the fact, and may well have been colored by the contemporary experiences of the chronicler. Translation difficulties have led to errors or loose interpretations bordering on artistic licence. Ambiguous language can make it difficult to distinguish gunpowder weapons from similar technologies that do not rely on gunpowder. A commonly cited example is a report of the Battle of Mohi in Eastern Europe that mentions a "long lance" sending forth "evil-smelling vapors and smoke", which has been variously interpreted by different historians as the "first-gas attack upon European soil" using gunpowder, "the first use of cannon in Europe", or merely a "toxic gas" with no evidence of gunpowder. It is difficult to accurately translate original Chinese alchemical texts, which tend to explain phenomena through metaphor, into modern scientific language with rigidly defined terminology in English. Early texts potentially mentioning gunpowder are sometimes marked by a linguistic process where semantic change occurred. For instance, the Arabic word naft transitioned from denoting naphtha to denoting gunpowder, and the Chinese word pào changed in meaning from trebuchet to a cannon. This has led to arguments on the exact origins of gunpowder based on etymological foundations. Science and technology historian Bert S. Hall makes the observation that, "It goes without saying, however, that historians bent on special pleading, or simply with axes of their own to grind, can find rich material in these terminological thickets."
Another major area of contention in modern studies of the history of gunpowder is regarding the transmission of gunpowder. While the literary and archaeological evidence supports a Chinese origin for gunpowder and guns, the manner in which gunpowder technology was transferred from China to the West is still under debate. It is unknown why the rapid spread of gunpowder technology across Eurasia took place over several decades whereas other technologies such as paper, the compass, and printing did not reach Europe until centuries after they were invented in China.
Potassium nitrate is the most important ingredient in terms of both bulk and function because the combustion process releases oxygen from the potassium nitrate, promoting the rapid burning of the other ingredients. To reduce the likelihood of accidental ignition by static electricity, the granules of modern gunpowder are typically coated with graphite, which prevents the build-up of electrostatic charge.
Charcoal does not consist of pure carbon; rather, it consists of partially Pyrolysis cellulose, in which the wood is not completely decomposed. Carbon differs from ordinary charcoal. Whereas charcoal's autoignition temperature is relatively low, carbon's is much greater. Thus, a gunpowder composition containing pure carbon would burn similarly to a match head, at best. Black Powder Recipes , Ulrich Bretscher
The current standard composition for the gunpowder manufactured by pyrotechnicians was adopted as long ago as 1780. Proportions by weight are 75% potassium nitrate (known as saltpeter or saltpetre), 15% softwood charcoal, and 10% sulfur. These ratios have varied over the centuries and by country, and can be altered somewhat depending on the purpose of the powder. For instance, power grades of black powder, unsuitable for use in firearms but adequate for blasting rock in quarrying operations, are called blasting powder rather than gunpowder with standard proportions of 70% nitrate, 14% charcoal, and 16% sulfur; blasting powder may be made with the cheaper sodium nitrate substituted for potassium nitrate and proportions may be as low as 40% nitrate, 30% charcoal, and 30% sulfur. In 1857, Lammot du Pont solved the main problem of using cheaper sodium nitrate formulations when he patented DuPont "B" blasting powder. After manufacturing grains from press-cake in the usual way, his process tumbled the powder with graphite dust for 12 hours. This formed a graphite coating on each grain that reduced its ability to absorb moisture.
Neither the use of graphite nor sodium nitrate was new. Glossing gunpowder corns with graphite was already an accepted technique in 1839, and sodium nitrate-based blasting powder had been made in Peru for many years using the sodium nitrate mined at Tarapacá (now in Chile). Also, in 1846, two plants were built in south-west England to make blasting powder using this sodium nitrate. The idea may well have been brought from Peru by Cornish miners returning home after completing their contracts. Another suggestion is that it was William Lobb, the plant collector, who recognised the possibilities of sodium nitrate during his travels in South America. Lammot du Pont would have known about the use of graphite, and probably also knew about the plants in south-west England. In his patent he was careful to state that his claim was for the combination of graphite with sodium nitrate–based powder, rather than for either of the two individual technologies.
French war powder in 1879 used the ratio 75% saltpeter, 12.5% charcoal, 12.5% sulfur. English war powder in 1879 used the ratio 75% saltpeter, 15% charcoal, 10% sulfur. The British Congreve rockets used 62.4% saltpeter, 23.2% charcoal and 14.4% sulfur, but the British Mark VII gunpowder was changed to 65% saltpeter, 20% charcoal and 15% sulfur. The explanation for the wide variety in formulation relates to usage. Powder used for rocketry can use a slower burn rate since it accelerates the projectile for a much longer time—whereas powders for weapons such as flintlocks, cap-locks, or matchlocks need a higher burn rate to accelerate the projectile in a much shorter distance. Cannons usually used lower burn-rate powders, because most would burst with higher burn-rate powders.
Lesmok powder was a product developed by DuPont in 1911, one of several semi-smokeless products in the industry containing a mixture of black and nitrocellulose powder. It was sold to Winchester and others primarily for .22 and .32 small calibers. Its advantage was that it was believed at the time to be less corrosive than smokeless powders then in use. It was not understood in the U.S. until the 1920s that the actual source of corrosion was the potassium chloride residue from potassium chlorate sensitized primers. The bulkier black powder fouling better disperses primer residue. Failure to mitigate primer corrosion by dispersion caused the false impression that nitrocellulose-based powder caused corrosion. Lesmok had some of the bulk of black powder for dispersing primer residue, but somewhat less total bulk than straight black powder, thus requiring less frequent bore cleaning. It was last sold by Winchester in 1947.
Sulfur's main role in gunpowder is to decrease the ignition temperature. A sample reaction for sulfur-free gunpowder would be:
Loading cannons or bombards before the powder-making advances of the Renaissance was a skilled art. Fine powder loaded haphazardly or too tightly would burn incompletely or too slowly. Typically, the breech-loading powder chamber in the rear of the piece was filled only about half full, the serpentine powder neither too compressed nor too loose, a wooden bung pounded in to seal the chamber from the barrel when assembled, and the projectile placed on. A carefully determined empty space was necessary for the charge to burn effectively. When the cannon was fired through the touchhole, turbulence from the initial surface combustion caused the rest of the powder to be rapidly exposed to the flame.
The advent of much more powerful and easy to use corned powder changed this procedure, but serpentine was used with older guns into the 17th century.
In late 14th century Europe and China, gunpowder was improved by wet grinding; liquid such as distilled spirits were added during the grinding-together of the ingredients and the moist paste dried afterwards. The principle of wet mixing to prevent the separation of dry ingredients, invented for gunpowder, is used today in the pharmaceutical industry.Molerus, Otto. "History of Civilization in the Western Hemisphere from the Point of View of Particulate Technology, Part 2," Advanced Powder Technology 7 (1996): 161–66 It was discovered that if the paste was rolled into balls before drying the resulting gunpowder absorbed less water from the air during storage and traveled better. The balls were then crushed in a mortar by the gunner immediately before use, with the old problem of uneven particle size and packing causing unpredictable results. If the right size particles were chosen, however, the result was a great improvement in power. Forming the damp paste into corn-sized clumps by hand or with the use of a sieve instead of larger balls produced a product after drying that loaded much better, as each tiny piece provided its own surrounding air space that allowed much more rapid combustion than a fine powder. This "corned" gunpowder was from 30% to 300% more powerful. An example is cited where of serpentine was needed to shoot a ball, but only of corned powder.
Because the dry powdered ingredients must be mixed and bonded together for extrusion and cut into grains to maintain the blend, size reduction and mixing is done while the ingredients are damp, usually with water. After 1800, instead of forming grains by hand or with sieves, the damp mill-cake was pressed in molds to increase its density and extract the liquid, forming press-cake. The pressing took varying amounts of time, depending on conditions such as atmospheric humidity. The hard, dense product was broken again into tiny pieces, which were separated with sieves to produce a uniform product for each purpose: coarse powders for cannons, finer grained powders for muskets, and the finest for small hand guns and priming. Inappropriately fine-grained powder often caused cannons to burst before the projectile could move down the barrel, due to the high initial spike in pressure.T.J. Rodman (1861), Reports of experiments on the properties of metals for cannon and the qualities of cannon powder, p. 270 Mammoth powder with large grains, made for Rodman gun, reduced the pressure to only 20 percent as high as ordinary cannon powder would have produced.
In the mid-19th century, measurements were made determining that the burning rate within a grain of black powder (or a tightly packed mass) is about 6 cm/s (0.20 feet/s), while the rate of ignition propagation from grain to grain is around 9 m/s (30 feet/s), over two orders of magnitude faster.
By the late 19th century manufacturing focused on standard grades of black powder from Fg used in large bore rifles and shotguns, through FFg (medium and small-bore arms such as muskets and fusils), FFFg (small-bore rifles and pistols), and FFFFg (extreme small bore, short pistols and most commonly for priming ). A coarser grade for use in military artillery blanks was designated A-1. These grades were sorted on a system of screens with oversize retained on a mesh of 6 wires per inch, A-1 retained on 10 wires per inch, Fg retained on 14, FFg on 24, FFFg on 46, and FFFFg on 60. Fines designated FFFFFg were usually reprocessed to minimize explosive dust hazards.Sharpe, Philip B. (1953) Complete Guide to Handloading, Funk & Wagnalls p. 137 In the United Kingdom the main service gunpowders were classified RFG (rifle grained fine) with diameter of one or two millimeters and RLG (rifle grained large) for grain diameters between two and six millimeters. Gunpowder grains can alternatively be categorized by mesh size: the BSS sieve mesh size, being the smallest mesh size, which retains no grains. Recognized grain sizes are Gunpowder G 7, G 20, G 40, and G 90.
Owing to the large market of antique and replica black-powder firearms in the US, modern black powder substitutes like Pyrodex, Triple Seven and Black Mag3 pellets have been developed since the 1970s. These products, which should not be confused with smokeless powders, aim to produce less fouling (solid residue), while maintaining the traditional volumetric measurement system for charges. Claims of less corrosiveness of these products have been controversial however. New cleaning products for black-powder guns have also been developed for this market.
A balanced, but still simplified, equation is: Flash! Bang! Whiz! , University of Denver
The exact percentages of ingredients varied greatly through the medieval period as the recipes were developed by trial and error, and needed to be updated for changing military technology.
Gunpowder does not burn as a single reaction, so the byproducts are not easily predicted. One study citing showed that it produced (in order of descending quantities) 55.91% solid products: potassium carbonate, potassium sulfate, potassium sulfide, sulfur, potassium nitrate, potassium thiocyanate, carbon, ammonium carbonate and 42.98% gaseous products: carbon dioxide, nitrogen, carbon monoxide, hydrogen sulfide, hydrogen, methane, 1.11% water.
Gunpowder made with less-expensive and more plentiful sodium nitrate instead of potassium nitrate (in appropriate proportions) works just as well. Gunpowder releases 3 megajoules per kilogram and contains its own oxidant. This is less than Trinitrotoluene (4.7 megajoules per kilogram), or gasoline (47.2 megajoules per kilogram in combustion, but gasoline requires an oxidant; for instance, an optimized gasoline and O2 mixture releases 10.4 megajoules per kilogram, taking into account the mass of the oxygen).
Gunpowder also has a low energy density compared to modern "smokeless" powders, and thus to achieve high energy loadings, large amounts are needed with heavy projectiles.
Around the late 14th century, European powdermakers first began adding liquid during grinding to improve mixing, reduce dust, and with it the risk of explosion. The powder-makers would then shape the resulting paste of dampened gunpowder, known as mill cake, into corns, or grains, to dry. Not only did corned powder keep better because of its reduced surface area, gunners also found that it was more powerful and easier to load into guns. Before long, powder-makers standardized the process by forcing mill cake through sieves instead of corning powder by hand.
The improvement was based on reducing the surface area of a higher density composition. At the beginning of the 19th century, makers increased density further by static pressing. They shoveled damp mill cake into a two-foot square box, placed this beneath a screw press and reduced it to half its volume. "Press cake" had the hardness of slate. They broke the dried slabs with hammers or rollers, and sorted the granules with sieves into different grades. In the United States, Eleuthere Irenee du Pont, who had learned the trade from Lavoisier, tumbled the dried grains in rotating barrels to round the edges and increase durability during shipping and handling. (Sharp grains rounded off in transport, producing fine "meal dust" that changed the burning properties.)
Another advance was the manufacture of kiln charcoal by distilling wood in heated iron retorts instead of burning it in earthen pits. Controlling the temperature influenced the power and consistency of the finished gunpowder. In 1863, in response to high prices for Indian saltpeter, DuPont chemists developed a process using potash or mined potassium chloride to convert plentiful sodium nitrate to potassium nitrate.
The following year (1864) the Gatebeck Low Gunpowder Works in Cumbria (Great Britain) started a plant to manufacture potassium nitrate by essentially the same chemical process. This is nowadays called the 'Wakefield Process', after the owners of the company. It would have used potassium chloride from the Staßfurt mines, near Magdeburg, Germany, which had recently become available in industrial quantities.
During the 18th century, gunpowder factories became increasingly dependent on mechanical energy. Despite mechanization, production difficulties related to humidity control, especially during the pressing, were still present in the late 19th century. A paper from 1885 laments that "Gunpowder is such a nervous and sensitive spirit, that in almost every process of manufacture it changes under our hands as the weather changes." Pressing times to the desired density could vary by a factor of three depending on the atmospheric humidity.C.E. Munroe (1885) "Notes on the literature of explosives no. VIII", Proceedings of the US Naval Institute, no. XI, p. 285
Beginning in the 1930s, gunpowder or smokeless powder was used in , Stunning for animals, cable splicers and other industrial construction tools. The "stud gun", a powder-actuated tool, drove nails or screws into solid concrete, a function not possible with hydraulic tools, and today is still an important part of various industries, but the cartridges usually use smokeless powders. Industrial have been used to eliminate persistent material rings in operating rotary kilns (such as those for cement, lime, phosphate, etc.) and clinker in operating furnaces, and commercial tools make the method more reliable.
Gunpowder has occasionally been employed for other purposes besides weapons, mining, fireworks and construction:
Gunpowder had originally been produced for medicinal purposes. It was eaten, in the expectaion of curing digestive ailments; inhaled, for respiratory disorders; and, as mentioned, rubbed onto skin level disorders like rashes or burns.
Sulfur-free powders
Smokeless powders
Granularity
Serpentine
Corning
Modern types
Chemistry
Production
Legal status
Other uses
See also
Footnotes
Notes
External links
target="_blank" rel="nofollow"> The DuPont Company on the Brandywine A digital exhibit produced by the Hagley Library that covers the founding and early history of the DuPont Company powder yards in Delaware
|
|